A640H Uncooled Thermal Imaging Module Product Manual V1.0.0

Historical Versions

Version	Date	Description
V1.0.0	2024-08	Initial release

Table of Contents

1 Product Description	1
2 Lens Type	1
3 Product Performance Parameters	2
4 Description of User Interface of Module	3
4.1 Pinout of Hirose 70-Pin Connector User Interface	4
4.2 List of User Extension Component	5
4.3 LVMOS	6
4.4 BT656 Interlaced Mode	7
4.5 BT656 Progressive Mode	9
4.6 DVP	10
4.7 Description of Image Algorithm Processing Delay	11
5 Structures and Dimensions	12
6. Precautions	12

1 Product Description

The A640H series uncooled infrared module offers a variety of lenses and multiple user expansion components to choose from. Designed for high-reliability applications, it provides a trusted solution widely used in outdoor observation, integrated gimbals, and driver assistance systems.

2 Lens Type

Array Size	Focal Length/F#	Lens type	HFOV×VFOV	IFOV
	4.1mmF1.2	Athermalized	89°×75°	2.92mrad
	6.9mmF1.0	Athermalized	63°×50°	1.74mrad
	9.1mmF1.2	Athermalized	48°×38°	1.31mrad
	13mmF1.2	Athermalized	33°×26°	0.92mrad
640×510	19mmF1.0	Athermalized	22°×18°	0.63mrad
640×512	25mmF1.0	Athermalized	17°×14°	0.48mrad
	35mmF1.0	Athermalized	12.5°×10°	0.34mrad
	55mmF1.0	Athermalized	8°×6.4°	0.21mrad
	75mmF1.0	Athermalized	5.9°×4.7°	0.16mrad
	100mmF1.0	Athermalized	4.4°×3.5°	0.12mrad

Table 2.1 Lens Parameters

3 Product Performance Parameters

Table 3.1 Specifications (1)

Performance Indicators					
Detector Type		Uncooled VOx	infrared detector		
Resolution		640)×512		
Pixel pitch		12µm			
Detector Frame	Rate	50Hz(60I	Hz optional)		
Spectral Band		8~	14µm		
Noise Equivaler Difference (NET	it Temperature D)	<40mK @	025℃, F#1.0		
Time to Image			≤4s		
TEC			No		
		Image Adjustment			
Brightness&Cor	ntrast Adjustment	Manual/	Auto/Linear		
Polarity		Black-ho	t/White-hot		
Edge highlight		Sup	ported		
Palette		Sup	ported		
Reticle		Display/Blank/Move			
Digital Zoom		1.0~8.0× continuous zoom (step size: 0.1)			
		Non-uniformity correction			
Imaga Dragoogi	20	Shutterless			
image Processi	ng	Digital filtering noise reduction			
		Digital detail enhancement			
Mirroring		Horizontal/Ve	ertical/Diagonal		
		Power Supply			
Dowor Supply P	langa	3.9~5VDC			
	ange	5~18V DC supported by user extension components			
Typical Service	Voltage	4\	/ DC		
Typical Power	Without user extension component	≤600mW	≤700mW		
@25°C	With user extension component	≤800mW	≤850mW		
Power Protectio	n	Overvoltage, undervoltage, and reverse connection supported by user extension components			
		Interface			
	Analog video	1-channel I	PAL system ⁽²⁾		
Video Output	Digital video	BT656 inte	erlaced mode		
		BT656 progressive mode			

	USB2.0		
	DVP		
Serial Communication Interface	USB2.0/RS232/UART (3.3V)		
	Physical Characteristics		
Weight (Without lens and extension components)	21g±1g		
Dimensions (Without lens)	26mm×26mm		
	Environment Adaptability		
Operating Temperature	-40 °C ∼ +80 °C		
Storage Temperature	-45 ℃~+85℃		
Humidity	5% to 95%, non-condensing		
Vibration	6.06g, random vibration ⁽³⁾		
Shock	1000g@0.3ms ⁽⁴⁾		

Notes:

(1) Ambient test environment: temperature: 23 to 25 $^{\circ}C$, humidity: 50 to 55%RH, and standard atmospheric pressure: 101.325kPa, without lens.

- (2) The analog video output uses the PAL-D system.
- (3) This magnitude is for a single module.
- (4) Single-module shock (without lens).

4 Description of User Interface of Module

The user interface of the module component adopts the design of HRS (Hirose) 70-Pin DF40C-70DP-0.4V (51) connectors, which contain interfaces for power supply, UART communication, analog video, 16-bit parallel data transmission, LVDS serial data transmission, and general-purpose input/output (GPIO). Users can connect to the module component using HRS DF40C-70DS-0.4V(51) connectors.

Figure 4.1 Module Component 70-Pin User Interface

4.1 Pinout of Hirose 70-Pin Connector User Interface

Pin No.	Pin Name	Туре	Description			
1, 2, 3, 4	MAIN_POWER	Power supply	Power inp	out (3.9~5V DC) ⁽¹⁾		
5, 6, 7, 8, 13, 14, 17, 18, 43, 44, 55, 56, 69, 70	GND	Power supply	Power GND ⁽³⁾			
9, 11	VIDEO1	Output	An	alog Video		
10, 12	VGND	Power supply	Analo	og video GND		
15	RS232_TX	Output	D6000 a	α		
16	RS232_RX	Input	N3232 (
46	UART_TX	Output		a_{2}		
45	UART_RX	Input	UART Communi			
57	GPIO0	Input/Output				
59	GPIO1	Input/Output				
61	GPIO2	Input/Output				
63	GPIO3	Input/Output	-			
65	GPIO4	Input/Output	General prograr	nmable input and output		
67	GPIO5	Input/Output	interface (1.8V)			
47	GPIO6	Input/Output				
49	GPIO7	Input/Output				
51	GPIO8	Input/Output				
53	GPIO9	Input/Output				
25	DV0	Output		Data signal LSB		
26	DV1	Output		Data signal		
27	DV2	Output		Data signal		
28	DV3	Output		Data signal		
29	DV4	Output		Data signal		
30	DV5	Output		Data signal		
31	DV6	Output	10/16-bit	Data signal		
32	DV7	Output	video signal	Data signal		
33	DV8	Output	(3.3V)	Data signal		
34	DV9	Output	-	Data signal MSB (10-bit)		
35	DV10	Output		Data signal		
36	DV11	Output		Data signal		
37	DV12	Output		Data signal		
38	DV13	Output		Data signal		

Table 4.1 User Interface Definition of HRS (Hirose) 70-pin Connector

23	IO0/DV14	Input/Output		Data signal	
24	IO1/DV15	Input/Output		Data signal MSB (16-bit)	
39	FRAME_VALID	Output		Frame valid signal	
40	LINE_VALID	Output		Row valid signal	
42	CLKOUT	Output		Clock Signal	
41	EXT_SYNC	Input/Output		External synchronization signal	
48, 50, 52, 54, 58, 60, 62, 64, 66, 68	NC		Reserved		
19	TCK				
20	TDI	Innut/Output			
21	TMS	input/Output	JI	AG (3.3V)	
22	TDO				

Notes:

(1) The typical power supply input voltage is 4V DC. All voltage here refers to the voltage to the module connector. Power input requirements: rise time (10%~90%) < 4ms; peak current > 1.0A.

(2) Both TX and RX in the serial communication interface refer to the transmit and receive of the module;

(3) GND and VGND are short-circuited inside the module.

(4) Common ground for the power ground and signal ground.

4.2 List of User Extension Component

Table 4.2 List of User Extension Component

Model	Figure	Main Interfaces/Functions
TAH02V110F016C		Power Supply: Powered by USB, typical voltage 5 VDC Communication: USB USB UVC digital video Analog video
TAH02V100F022C	Parameter and the second	Power Supply: Powered by USB, typical voltage 5 VDC Communication: USB RS422 USB UVC digital video Analog video

TAX000V100F012C		Power Supply: 4.5 to 18 VDC, typical voltage 12 VDC Communication: RS-232, UART Analog video BT.656 digital video
TAH02V100F031C		Power Supply: 6 to 18 VDC, typical voltage 12 VDC Communication: RS232 Analog video DVP digital video
TAH02V100F017C	ALCOCAVE-SER PH 1 KG CENTRE ALCOLOGINA	Power Supply: 5 to 18 VDC, typical voltage 12 VDC Communication: UART, RS232, RS422 MIPI digital video Analog video

4.3 LVMOS

LVCMOS is a common digital video interface that allows parallel output. The DVP interface contains 1 clock signal line, 1 frame synchronization (field synchronization) signal line, 1 line synchronization signal line, 1 enable signal line, and 14 parallel data signal lines. When a data frame arrives, the frame synchronization signal goes high, indicating that the next data is the same data frame. When the frame is finished, the frame synchronization signal goes low, indicating the end of the data frame. Similarly, when a line of data arrives, the line synchronization signal goes high, and when the line of data is finished, the line synchronization signal goes low.

Figure 4.2 LVCMOS Timing Diagram

No.	Signal	Description	Remarks
1	CLK	Clock	18.75MHz (=700×528×50Hz)
2	DATA	Data	Valid data: 640 pixels×512 lines
3	HSYNC	Line synchronization	There are 700 pixels in one line, of which 640 are valid data, and the remaining 60 are blanking data, with 30 pixels in the pre-blanking area and 30 pixels in the post-blanking area.
4	VSYNC	Frame synchronization	There are 528 lines in one frame, 512 of which are valid data lines, and the remaining 16 are blanking data lines.

Table 4.3 LVCMOS Timing Description

4.4 BT656 Interlaced Mode

BT656 videos do not require a frame synchronization signal or a line synchronization signal but only one clock signal and eight cables.

In BT656 interlaced mode, the output array size of the module is 720×576, and the frame rate is 25Hz. In interlaced mode, data in odd-numbered lines (1, 3, 5...) is output as the data of the odd field, and data in even-numbered lines (2, 4, 6...) is output as the data of the even field. The data of a frame is not arranged in sequence according to the line number, as shown in the table and figure below.

Table 4.4 BT656 Clock Frequency

Figure 4.3 BT656 Interlaced Mode Timing

For BT656 videos, each line of data includes three parts: reference code (EAV/SAV), blanking area (Blanking), and data area (Active Video). Lines with effective data are called active lines, while those with ineffective data are called blanking lines. BT656 videos have no line or field synchronization signal. Therefore, flag bits of line or frame should be added to the 8-bit data to indicate the start and end of the

line or frame. These flag bits are called synchronization reference codes. Each line contains 1,728 bytes of data consisting of a horizontal control signal and a YCbCr video data signal arranged in the order Cb-Y-Cr-Y. The first 288 bytes of the line represent the line control signal. Among these bytes, the first four bytes indicate the valid video end signal (EAV), which is followed by 140 "80, 10" fixed data blocks (totaling 280 bytes). The 288 bytes end with a 4-byte video start signal (SAV). The effective video data is next to the horizontal control signal and has 1440 bytes in total. Both the even field and odd field contain 288 lines and 720 pixels, and the entire field of the BT656 image has 576 lines and 720 pixels.

Figure 4.4 Fields/Segments Timing in Interlaced and Segmented Modes

See Figure 4.5 for specific output data:

Figure 4.5 Output Data of Active Line

"FF, 00, 00" occupy the leading three bytes of SAV and EAV. "XY" in the last byte indicates the position of the line in the entire data frame and distinguishes between SAV and EAV. Refer to Table 6 for detailed information on "XY". F=0: Even field; F=1: Odd field; V=0: The line contains effective video data; V=1: The line contains no effective video data; H=0: SAV signal; H=1: EAV signal. P3~P0 are protection signals, which are generated based on F, V, and H following XOR rules. Specifically, P3=V xor H, P2=F xor H, P1=F xor V, and P0=F xor V xor H, based on which synchronization header detection is implemented. Detailed information is shown below:

Table 4.5 BT656 Synchronization Header Definition

bit	7	6	5	4	3	2	1	0
value	1	F	V	Н	V xor H	F xor H	F xor V	F xor V xor H

	0	1	2	3	4-283	284	285	286	287	288-1727
Line		E	٩V		Invalid		S	AV		Valid
0-21	FF	00	00	B6	Y: 10 Cb/Cr: 80	FF	00	00	AB	Y: 10 Cb/Cr: 80
22-309	FF	00	00	9D		FF	00	00	80	YCbCr
310-311	FF	00	00	B6		FF	00	00	AB	Y: 10 Cb/Cr: 80
312-334	FF	00	00	F1		FF	00	00	EC	Y: 10 Cb/Cr: 80
335-622	FF	00	00	DA		FF	00	00	C7	YCbCr
623-624	FF	00	00	F1		FF	00	00	EC	Y: 10 Cb/Cr: 80

Table 4.6 BT656 Data Distribution per Frame in Interlaced Mode

The output effective data is displayed in a 640×512 area array in the center, with the rest of the data filling in the black border.

4.5 BT656 Progressive Mode

Fsync

BT656 progressive output indicates that data is output line by line.

Figure 6 Frame Timing Relationship in Progressive Mode

	0	1	2	3	4-443	444	445	446	447	448-1727
Line	EAV				Invalid	SAV				Valid
0-112	FF	00	00	B6	Y: 10 Cb/Cr: 80	FF	00	00	AB	Y: 10 Cb/Cr: 80
113-624	FF	00	00	9D		FF	00	00	80	YCbCr

Table 4.8 BT656 Data Distribution per Frame in Progressive Mode

BT656 image has 640x512 pixels.

4.6 DVP

Digital Video Port (DVP) is a common digital video interface that allows parallel output. The DVP interface contains 1 clock signal line, 1 frame synchronization (field synchronization) signal line, 1 line synchronization signal line, and 8 parallel data signal lines. When a data frame arrives, the frame synchronization signal goes high, indicating that the next data is the same data frame. When the frame is finished, the frame synchronization signal goes low, indicating the end of the data frame. Similarly, when a line of data arrives, the line synchronization signal goes high, and when the line of data is finished, the line synchronization signal goes low.

Figure 4.8 DVP Timing Diagram

Table 4.9 DVP	Timing Description
---------------	---------------------------

No.	Signal	Description	Remarks
1	CLK	Clock	18.75MHz (=700×528×50Hz)
2	DATA	Data	Valid data: 640 pixels×512 lines
3	HSYNC	Line synchronization	There are 700 pixels in one line, of which 640 are valid data, and the remaining 60 are blanking data, with 30 pixels in the pre-blanking area and 30 pixels in the post-blanking area.
4	VSYNC	Frame synchronization	There are 528 lines in one frame, 512 of which are valid data lines, and the remaining 16 are blanking data lines.

4.7 Description of Image Algorithm Processing Delay

Allows digital video output with or without zoom. Delays are shown in Figure 9.

Figure 4.9 Schematic Diagram of Digital Video Output

1. Image processing algorithm delay:

The processing delay of the NUC module is 1,407 clock cycles, including 700 cycles for each line (two lines) and additional seven cycles.

The processing delay of the DNS module is 16,825 clock cycles, including 700 cycles for each line (24 lines) and additional 25 cycles.

The processing delay of the DRC module is 4220 clock cycles, including 700 cycles for each line (6 lines) and additional 20 cycles.

The clock frequency is 18.75M, and the image processing delay is 1.20ms.

- 2. Digital video direct output delay: =0ms
- 3. Digital video zoom delay: ≤40ms (two frames)

The digital video direct output delay is no greater than 1.20ms, and the digital video zoom delay is no greater than 41.2ms.

5 Structures and Dimensions

Figure 5.1 Module Dimension

6. Precautions

To protect you and others from injury or to protect your equipment from damage, please read all the following information before using your equipment.

- (1) The product shall not face towards the sun or other high-intensity radiation sources directly;
- (2) The optimal environment temperature for operating is 20 $^\circ$ C to 50 $^\circ$ C;
- (3) The detector window shall not be touched or hit with hands or other objects;
- (4) The equipment and cables shall not be touched with wet hands;
- (5) Please do not bend or damage cables;
- (6) Scrubbing your equipment with diluents is prohibited;
- (7) Do not unplug and plug cables when the power is on;
- (8) Wrong cable should not be connected in case that brings damages to the equipment;
- (9) Please pay attention to prevent static electricity;
- (10) Please do not disassemble the equipment. If there is any fault, please contact us, and professional personnel will carry out maintenance.